

TELEMATICS APPLICATION BUILDER

Using telematics to deliver improved outcomes

APPLICATION BUILDER

NATIONAL TELEMATICS FRAMEWORK

© Transport Certification Australia Limited 2018.

This document has been published by Transport Certification Australia Limited.

This document is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any person or process without the prior written permission of Transport Certification Australia Limited.

Transport Certification Australia Ltd

T: +61 3 8601 4600 E: tca@tca.gov.au W: www.tca.gov.au ABN 83 113 379 936

DOCUMENT DETAILS

Title: National Telematics Framework - Application Builder

Document Number: TCA-G39

Version: 1.0

Version Date: May 2018

Document History:

VersionDateDescription1.02018First release

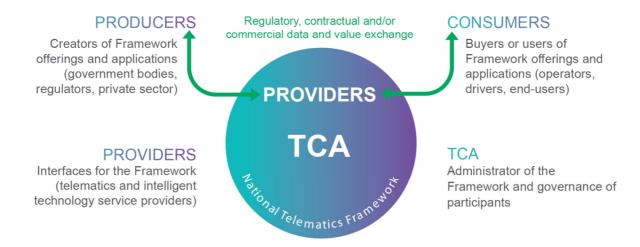
Transport Certification Australia Limited believes this publication to be correct at time of printing and does not accept responsibility for any consequences arising from the use of information herein. Readers should rely on their own skills and judgment to apply information to particular issues.

TCA[™], Transport Certification Australia[™], TCA National Telematics Framework[™], TCA Certified[™], TCA Type-Approved[™], Intelligent Access Program[™], IAP®, IAP Service Provider[™], IAP-SP[™], In-Vehicle Unit[™], IVU[™], Electronic Work Diary[™], EWD[™], On-Board Mass[™] and OBM[™] are trade marks of Transport Certification Australia Limited.

TCA page numbering convention: for ease of digital readability and referencing the cover is page 1.

NATIONAL TELEMATICS FRAMEWORK

The National Telematics Framework is a digital business platform consisting of infrastructure and rules that support an open marketplace of telematics and related intelligent technology providers.


The National Telematics Framework:

- · Provides a national platform for the use of telematics and related intelligent technologies
- Supports different applications across regulatory, contractual and commercial needs
- · Supports different levels of assurance
- Is outcome focussed and encourages innovation.

The adoption of the National Telematics Framework for the delivery of offerings and applications both for public policy and private decision making is a world first. It has positioned Australia as the leader in the delivery of such services through the advent of the digital economy.

The National Telematics Framework was established following a series of decisions made by Responsible Ministers between 2003 and 2008, and was globally recognised as an International Standard (ISO 15638) in 2012.

NATIONAL TELEMATICS FRAMEWORK ECOSYSTEM

CONTENTS

1		RODUCTION	5
	1.1	PURPOSE	5
2 3		P 1 – DEFINING THE INTENDED PURPOSE P 2 – CONFIRM WHETHER THE USE OF TELEMATICS	6
3	316	IS A SUITABLE OPTION	6
4	STE	P 3 – HOW WILL TELEMATICS BE USED WITHIN A POLICY OR PROGRAM?	7
5		P 4 – WHAT LEVEL OF ASSURANCE IS REQUIRED?	8
6	STE	P 5 – SELECT A TELEMATICS APPLICATION	9
	6.1	WHAT GIVES EFFECT TO A TELEMATICS APPLICATION WITHIN THE NATIONAL TELEMATICS FRAMEWORK?	10
	6.2	APPLICATIONS WITHIN THE NATIONAL TELEMATICS FRAMEWORK	11
	6.3	EXAMPLES OF HOW APPLICATIONS ARE USED BY PRODUCERS, FO DIFFERENT PURPOSES	R 12
	6.4	HOW DIFFERENT TELEMATICS APPLICATIONS COLLECT DATA ELEMAND GENERATE DATA RECORDS	MENTS 15
7		MPLE OF HOW AN APPLICATION CAN BE CREATED WITHIN FINANCIAL TELEMATICS FRAMEWORK	THE 20
	7.1	STEP 1 – DEFINING THE INTENDED PURPOSE	20
	7.2	STEP 2 – CONFIRM WHETHER THE USE OF TELEMATICS IS A SUITAI OPTION	BLE 20
	7.3	STEP 3 – HOW WILL TELEMATICS BE USED WITHIN A POLICY OR PROGRAM?	20
	7.4	STEP 4 – WHAT LEVEL OF ASSURANCE IS REQUIRED?	21
	7.5	STEP 5 – SELECT AN APPLICATION	21
8	EST	ABLISHING FUNCTIONAL REQUIREMENTS	21
	8.1	SELECTING DATA ELEMENTS	21
	8.2	CREATING A NEW APPLICATION	23

1 INTRODUCTION

1.1 PURPOSE

The use of telematics can enable improved outcomes to be achieved through policies and operational programs.

In the context of this document, policies and programs may include:

- Public policies and programs which involve a broad range of stakeholders and/or industry sectors (e.g. taxi, hire cars and ridesharing regulations, heavy vehicle reforms, road charging reforms)
- Internal (private) policies and programs which involve specific stakeholders within organisations (e.g. Safe driving policies, Occupational Health and Safety (OHS) programs)

The following steps are intended to assist stakeholders involved in the development of policies and programs to make better informed decisions when exploring the potential use of applications through the National Telematics Framework.

TCA works with stakeholders to consider whether telematics applications are able to deliver upon intended outcomes, by giving consideration to policy, technical, commercial and operational dimensions (the Four Pillars of the National Telematics Framework).

2 STEP 1 – DEFINING THE INTENDED PURPOSE

When giving consideration to the possible use of telematics, clarity about the intended purpose – as well as the outcomes sought – is paramount.

The intended purpose may be informed by such things as:

- · Policy statements (public or internal)
- An analysis of current gaps or shortfalls (which need addressing)
- A clear definition of the problem to be solved (agreed with stakeholders)
- Legislative or regulatory reforms.

There are well established guidelines used by government in the development of public policy and associated responses associated with this step. Private sector decision making also entails similar structured consideration processes, when defining the intended purpose and outcomes sought.

3 STEP 2 – CONFIRM WHETHER THE USE OF TELEMATICS IS A SUITABLE OPTION

At this point of the process, the use of telematics may be considered – along with other options – to deliver the intended outcomes.

The consideration of a telematics option should be assessed in relation to:

- Costs and benefits (both qualitative and quantitative)
- The policy and program design in which a telematics application is used (see Step 3)
- The data elements that should be collected (see Telematics Data Dictionary)
- · The functions required from the application
- How data collected, and functions performed by the application, could help deliver the intended outcome
- Potential implementation and operational issues.

It may be determined through this step that the use of telematics is not suitable to achieve the intended purpose, and that other approaches may be deemed more suitable or effective.

4 STEP 3 – HOW WILL TELEMATICS BE USED WITHIN A POLICY OR PROGRAM?

If telematics is deemed to be a suitable option, detailed consideration should be given to:

- The policy or program 'design', and the proposed use of telematics within the policy or program, including:
 - The functions that would be performed within the telematics application and
 - The functions performed that are undertaken through operational practices (outside of the application).
- Enabling legislation or regulations (if required) or alternatively, contractual instruments to give effect to the use of telematics within a public policy or commercial program
- The establishment of relevant policies, procedures and operating guidelines (public or internal/private policies)
- · The understanding of privacy principles
- Possible use case scenarios
- · Possible risks and impacts.

The outcomes of Steps 1 to 3 should inform:

- The intended purpose and outcomes sought
- Whether the use of telematics can contribute towards the intended purpose
- The proposed use of telematics within the design of a policy or program.

These outcomes will inform the next steps, including:

- · The level of assurance required
- The selection of an appropriate telematics application
- The required functions of a telematics application.

5 STEP 4 – WHAT LEVEL OF ASSURANCE IS REQUIRED?

Each application needs to have an appropriate level of assurance, based on:

- The intended objective and outcome (Step 1)
- Understanding how a telematics application will be used (Step 3).

LEVEL		DESCRIPTION	USER
Level 1 Assurance	Self-assessment or advisory No independent oversight	Self-assessment of data No independent oversight of telematics application	Consumers need to self- assess the use of data in relation to its intended use
Level 2 Assurance	Independent assessment – periodic audit	Independent assessment of specific elements of telematics application Telematics data is combined with other data sources	The use of telematics data in combination with other data sources, to deliver an intended purpose
Level 3 Assurance	Independent assessment – oversight	Certificate-based data and evidence Independent assessment and oversight of telematics application and service provision.	The use of telematics data as the primary source of data to deliver an intended purpose

Level 1 Assurance relies on self-assessment. It is associated with 'advisory' applications, and where the user does not depend on high levels of data accuracy or integrity.

Level 2 Assurance provides greater rigour in the collection and reporting of data from telematics applications, and that data is complemented with other data sources (such as data collected from other systems, administrative records and/or operational programs) which, when combined, deliver a commensurate level of assurance.

Level 3 Assurance provides the necessary environment for collection and secure storage of high-accuracy and high-integrity data, which may provide (subject to underlying legislative provisions) certificate-based data and evidence.

For further information, refer to the National Telematics Framework - Levels of Assurance document.

The level of assurance will also influence what telematics application should be used (see Step 5).

6 STEP 5 – SELECT A TELEMATICS APPLICATION

Depending on the policy objectives sought, consideration can then be given to:

- Using an existing telematics application within the National Telematics Framework or
- Constructing a new telematics application within the National Telematics Framework.

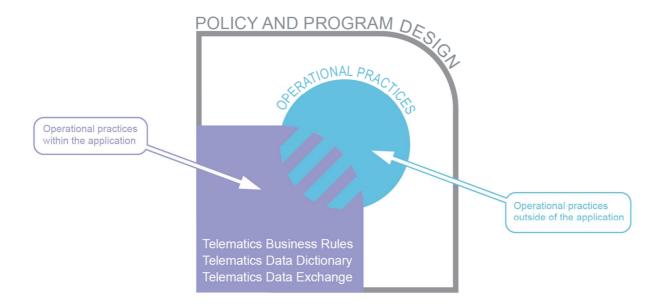
Consideration should also be given to the following dimensions at this step:

- Policy
- Technical
- Commercial
- Operational.

Refer to the National Telematics Framework document for further information about these inter-related dimensions.

Working with TCA – and referencing the Telematics Data Dictionary, the Telematics Data Exchange and the Telematics Business Rules – a new application can be constructed by:

- Establishing the functional requirements
- Selecting specific data elements
- Defining the composition of data records (including the use of existing data records when possible).


When combined, these items form a Functional and Technical Specification for a new application within the National Telematics Framework.

6.1 WHAT GIVES EFFECT TO A TELEMATICS APPLICATION WITHIN THE NATIONAL TELEMATICS FRAMEWORK?

There are two key dimensions to a telematics application.

- 1. Components which are specific to each application, including:
 - · Functional requirements
 - Data elements
 - Data records.
- 2. Components which are common all applications, including:
 - Telematics Business Rules
 - Telematics Data Dictionary
 - Telematics Data Exchange.

The telematics application operates within the policy and program design established by producers, as depicted in the following image:

As part of Step 3, the policy or program 'design' should consider:

 The type and extent of operational practices that would be performed within the telematics application

and

- The type and extent of operational practices that would be performed *outside* of the application practices (outside of the application), including:
 - o Fleet safety management systems and practices
 - Occupational Health and Safety guidelines
 - Internal compliance management systems.

6.2 APPLICATIONS WITHIN THE NATIONAL TELEMATICS FRAMEWORK

A telematics application consists of different data elements, which when collected and combined, enable data records to be generated.

Each application:

- References common:
 - o Telematics Business Rules
 - o Telematics Data Dictionary
 - o Telematics Data Exchange.
- · Collects data elements
- Articulates functional requirements
- Generates data records.

The data elements collected, the functional requirements and the type of records generated, are a function of:

- The intended purpose
- · How telematics will be used to deliver upon the intended purpose
- The level of assurance required.

The full suite of data elements available for use through the National Telematics Framework is defined in the Telematics Data Dictionary and is summarised in Table 1.

Table 1: Broad groupings of data elements currently available through the National Telematics Framework

	Date and Time Data	GPS Data	
Application Data	Date Time	Direction of Travel Horizontal Dilution of Precision	Object Data
 Application Usage Application Non-Usage Application Alarm Code Application Log On Method 	Device Data Device Count Device Hardware Version	Latitude Longitude Satellite Count Hire and Engagement Data	Object Description Object ID Object Name
Authorised Officer Data Authorised Officer ID Days Driver Data Records Requested	Device ID Device Sequence Number Device Software Version Movement Sensor Status Terminal ID	 Hire Status Price Component Price ID Price Total Vehicle Engagement 	Name Street Address Telephone Web Address
Axle Data • Axle Count • Axle Group Count • Lift Axle Status	Distance Data Distance Travelled Odometer Reading Driver Data	Jurisdiction Data Issuing Authority Jurisdiction	Speed Data Speed Threshold Vehicle Speed
Breath Sample Data Breath Alcohol Concentration Breath Sample Flow Rate Breath Sample Flow Volume	Driver ID Driver Licence Number Fit for Work Status Name	Location Data Locality Address Postcode Radius	Record Data Specification Reference Record Number Record Type Vehicle Data
Breath Sample Duration Breath Test Result Breath Test Type Comment Data	Event DataEvent CodeEvent DescriptionEvent NameEvent Severity	State or Territory Mass Data Axle Group Mass Axle Group Mass Quality	Ignition Switch Status Vehicle Category Code Vehicle Category Name Vehicle Identification Number
Comment Code Comment Name Comment Text	 Fatigue Management Data Work Diary Number Work Hours Option Work Rest Status Two-up Driver Status 	Gross Vehicle Mass Load Status Mass Sensor Unit Count Mass Sensor Unit Sequence Number Mass Status Self-Declared Mass	 Vehicle Interlock Status Vehicle Registration Jurisdiction Vehicle Registration Number

6.3 EXAMPLES OF HOW APPLICATIONS ARE USED BY PRODUCERS, FOR DIFFERENT PURPOSES

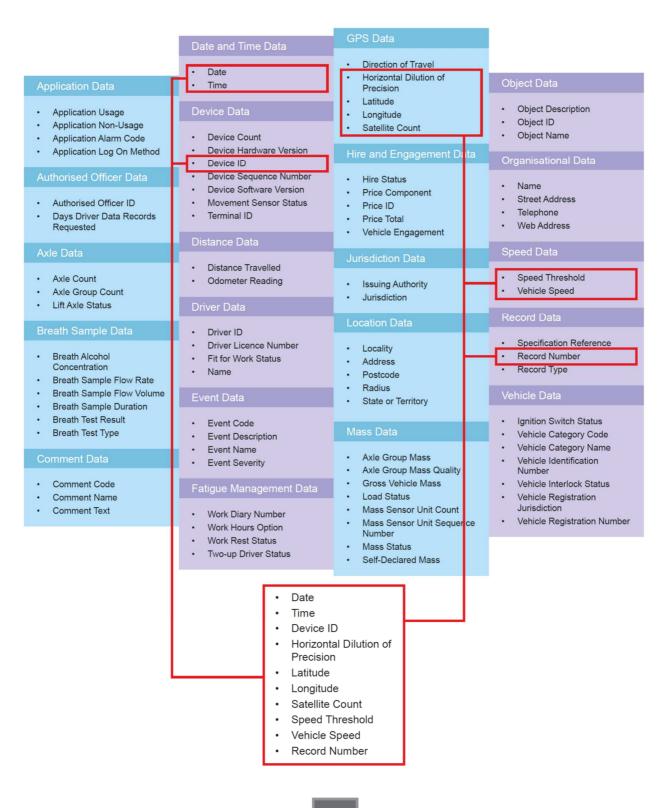
There are currently two applications within the National Telematics Framework which are used for the specific purpose of managing vehicle speed. These two speed-related applications are:

- Intelligent Speed Management (ISM)
- Intelligent Speed Compliance (ISC).

However, differences in:

- · their intended purpose
- · how these applications are used, and
- the level of assurance each requires
- ... have influenced the shape of these applications.

The following table summarises how each application has been shaped by different policy needs (and intended outcomes).


Table 2: ISM and ISC application Use

	ISM	ISC
INTENDED PURPOSE	To improve the accuracy and reliability of speed measurements using GPS-based systems	The direct compliance management and enforcement of vehicle speed using certificate-based telematics data and evidence.
POLICY AND PROGRAM DESIGN	The policy and program design relies on the functions performed <i>outside</i> of the ISM application to deliver the intended purpose.	The policy and program design relies primarily on the functions performed within the ISC application to deliver the intended purpose.
HOW THE APPLICATION IS USED	The ISM application may be used in conjunction with other approaches to deliver upon the intended purpose, which may include: • Fleet safety management systems and practices • Occupational Health and Safety guidelines • Internal compliance management systems.	The ISC application is the <i>primary</i> means to deliver upon the intended purpose. Government agencies and regulators may have enabling policies, legislation, regulation and administrative practices which give effect to the ISC application. The policy and program design will also anticipate the tampering and malfunctions, inclusive of processes to: Manage the treatment of speeding events during a period when a tamper or malfunction had been recorded Request certificates of evidence from TCA (if required) for enforcement action.
LEVEL OF ASSURANCE	Level 1 Self-assessment by consumers is sufficient, in recognition that the ISM application may be used with other approaches to deliver upon the intended purpose (see Levels of Assurance document)	Level 3 Independent oversight with high levels of integrity and assurance is required, in recognition that the ISC application is the <i>primary</i> means to deliver upon the intended purpose (see Levels of Assurance document)

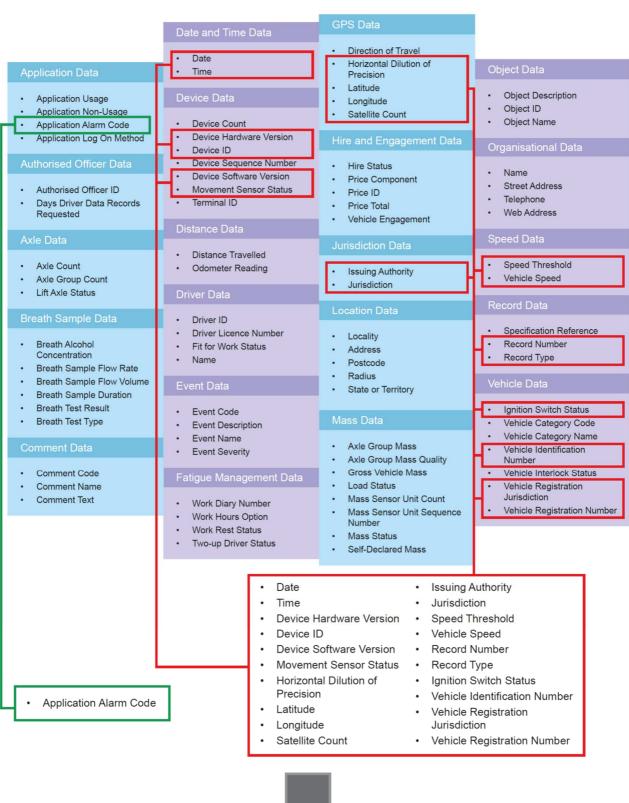
	ISM	ISC
FEATURES OF THE APPLICATION	Performance-based requirements Overspeed warning to driver (if required) Generation of data records to operator (if required)	Performance-based requirements Overspeed warning to driver (if required) Tamper detection Malfunction detection Generation of data records to operator and/or regulator Certificate-based data and evidence
DATA ELEMENTS COLLECTED	See Table 3	See Table 5
DATA RECORDS GENERATED	Speed Records	Speed Records Alarm Records

6.4 HOW DIFFERENT TELEMATICS APPLICATIONS COLLECT DATA ELEMENTS AND GENERATE DATA RECORDS

Table 3: Data elements used in the ISM application

Using these data elements, Speed Records are generated through the ISM application:

Given the nature of the ISM application, only one type of data (Speed Record) needs to be generated.


Table 4: Record Format of a Speed Record from the ISM application

Data Element
Date
Time
Device ID
Horizontal Dilution of Precision
Latitude
Longitude
Satellite Count
Speed Threshold
Vehicle Speed
Record Number

Field Name	Use	Data Type	Length	Decimals
Date	Mandatory	Date	8*	
Time	Mandatory	Time	6*	
IVU ID	Mandatory	String	20	
HDOP	Optional	Decimal	4	1
Position Latitude	Optional	Decimal	9	5
Position Longitude	Optional	Decimal	10	5
Satellite Count	Optional	Integer	2	
Speed Threshold	Optional	Decimal	5	1
Speed	Mandatory	Decimal	5	1
Record Number	Optional	Integer	10	

^{*} In this use case, Date is encoded as YYYYMMDD, and Time is encoded as HHMMSS.

Table 5: Data elements used in the ISC application

Using these data elements, the following records are generated through the ISC application:

- Speed Records
- Alarm Records.

The generation of alarm records is it important to identify when the application, and the data being collected through the application, may be impacted by a malfunction or possible tamper event.

Alarm records are an essential component of the ISC application, as the intended purpose demands a high level of integrity from data, for the compliance management and enforcement of vehicle speed.

Table 6: Record Format of a Speed Record from the ISC application

Data Element
Date
Time
Device Hardware Version
Device ID
Device Software Version
Movement Sensor Status
Horizontal Dilution of Precision
Latitude
Longitude
Satellite Count
Issuing Authority
Speed Threshold
Vehicle Speed
Jurisdiction
Record Number
Record Type
Ignition Switch Status
Vehicle Identification Number
Vehicle Registration Jurisdiction

Field Name	Use	Data Type	Length	Decimals
Date	Mandatory	Date	8*	
Time	Mandatory	Time	6*	
IVU Hardware Version	Mandatory	String	6	
IVU ID	Mandatory	String	20	
IVU Software Version	Mandatory	String	6	
Other Independent Movement Sensor Status	Mandatory	Enumerated	_	
HDOP	Mandatory	Decimal	4	1
Position Latitude	Optional	Decimal	9	5
Position Longitude	Optional	Decimal	10	5
Satellite Count	Mandatory	Integer	2	
Issuing Authority	Mandatory	String	255	
Speed Threshold	Mandatory	Decimal	5	1
Speed	Mandatory	Decimal	5	1
Jurisdiction	Mandatory	Enumerated	_	
Record Number	Mandatory	Integer	10	
Record Type	Mandatory	Integer	99	
Ignition Switch Status	Mandatory	Enumerated	_	
Vehicle Identification Number	Mandatory	String	17	
Vehicle Registration Jurisdiction	Mandatory	Enumerated	_	

Data Element
Vehicle Registration Number

Field Name	Use	Data Type	Length	Decimals
Vehicle Registration Jurisdiction	Mandatory	String	10	

 $^{^{\}star}\,$ In this use case, Date is encoded as YYYYMMDD, and Time is encoded as HHMMSS.

Table 7: Record Format of an Alarm Record from the ISC application

Data Element	Field Name	Use	Data Type	Length	Decimals
Application Alarm Code	Trigger Event	Mandatory	Enumerated	**	
Date	Date	Mandatory	Date	8*	
Time	Time	Mandatory	Time	6*	
Device ID	IVU ID	Mandatory	String	20	
Issuing Authority	Issuing Authority	Mandatory	String	255	
Jurisdiction	Jurisdiction	Mandatory	Enumerated	_	
Record Number	Record Number	Mandatory	Integer	10	
Record Type	Record Type	Mandatory	Integer	99	
Vehicle Identification Number	Vehicle Identification Number	Mandatory	String	17	
Vehicle Registration Jurisdiction	Vehicle Registration Jurisdiction	Mandatory	Enumerated	_	
Vehicle Registration Number	Vehicle Registration Jurisdiction	Mandatory	String	10	

 $^{^{\}star}\,$ In this use case, Date is encoded as YYYYMMDD, and Time is encoded as HHMMSS.

^{**} In this use case, events that trigger Alarm Records will be mapped to codes of 1 to 12.

7 ATTACHMENT A: EXAMPLE OF HOW AN APPLICATION CAN BE CREATED WITHIN THE NATIONAL TELEMATICS FRAMEWORK

The following table highlights how a new application can be created within the National Telematics Framework.

For illustrative purposes, this application is intended to provide Producers with road utilisation data for planning purposes.

7.1 STEP 1 – DEFINING THE INTENDED PURPOSE

Road managers seek to gain a better understanding of the level of road infrastructure utilisation by specific types of vehicles.

Specifically, road managers seek to:

- Gain access to specific kinds of telematics data to better inform heavy vehicle utilisation on specific parts of the road networks
- Collect road and bridge utilisation data in a standardised format.

7.2 STEP 2 – CONFIRM WHETHER THE USE OF TELEMATICS IS A SUITABLE OPTION

Conventional methods of collecting data typically only provide 'point-based' data samples on specific parts of the road network (i.e. road-based systems which count vehicle passes, vehicle configuration and/or loads).

The use of telematics has been identified as a way to:

- Improve the availability of data to road managers
- · Link telematics data with other sources of data collected on the road network
- Gain improved knowledge about the level of use and consumption of specific infrastructure assets (which can better inform planning of maintenance and capital investments).

7.3 STEP 3 – HOW WILL TELEMATICS BE USED WITHIN A POLICY OR PROGRAM?

The policy or program design is based on the following principles:

- Transport operators will voluntarily opt-in vehicles to be monitored through the application
- The application shall leverage existing investments made by producers, providers and consumers
- Data collected from monitored vehicles will only be used for information and planning purposes
- Protections and safeguards will be implemented to prevent data from monitored vehicles being used for non-disclosed purposes (including compliance and enforcement activities).
- Road managers may offer transport operators incentives to voluntarily have their vehicles monitored through the application.

7.4 STEP 4 – WHAT LEVEL OF ASSURANCE IS REQUIRED?

Based on the intended purpose (Step 1) and the proposed policy and program (Step 3), a medium level of assurance is required for this application.

This reflects the need for road managers to have a sufficient level of accuracy in the collection of data, so it can be reliably used for road infrastructure planning purposes.

However, as the application is not being used for compliance and enforcement purposes, high integrity, certificate-based data and evidence is not required for the application.

Level 2 Assurance is therefore appropriate for this application.

7.5 STEP 5 – SELECT AN APPLICATION

Working with TCA – and referencing the Telematics Data Dictionary, the Telematics Data Exchange and the Telematics Business Rules – a new application can be constructed by:

- Establishing the functional requirements (and application-specific business rules)
- · Selecting specific data elements
- Defining the composition of data records (including the use of existing data records when possible).

8 ESTABLISHING FUNCTIONAL REQUIREMENTS

The functional requirements that will be performed within the application include the ability to:

- · Define specific road asset/s for monitoring
- Identify when a vehicle traverses a specific road asset/s
- Generate reports when a vehicle traverses a specific road asset/s.

8.1 SELECTING DATA ELEMENTS

Based on the intended purpose (Step 1), the policy and program design (Step 4), and the functional requirements that will be performed within the application (above), the data elements that need to be collected through the application can be determined.

Table 8 presents the data elements that can be used in the new application.

GPS Data Direction of Travel Date Horizontal Dilution of Time Precision Latitude Object Description Device Data Application Usage Longitude Object ID · Application Non-Usage Satellite Count **Device Count** Object Name Application Alarm Code Application Log On Method Device Hardware Version Hire and Engagement Data Device ID Device Sequence Number Hire Status Name Device Software Version Price Component Street Address Authorised Officer ID Movement Sensor Status Price ID Telephone Days Driver Data Records Terminal ID Price Total Requested Web Address Vehicle Engagement Distance Travelled Speed Threshold Axle Count Odometer Reading Issuing Authority Axle Group Count Vehicle Speed Jurisdiction Lift Axle Status Driver ID Specification Reference **Driver Licence Number** Locality **Breath Alcohol** Record Number Fit for Work Status Address Concentration Record Type Name Postcode Breath Sample Flow Rate Radius Breath Sample Flow Volume State or Territory Breath Sample Duration **Breath Test Result Ignition Switch Status Event Code** Breath Test Type Vehicle Category Code **Event Description** Vehicle Category Name **Event Name** Axle Group Mass Vehicle Identification **Event Severity** Axle Group Mass Quality Number Comment Code Gross Vehicle Mass Vehicle Interlock Status Load Status Comment Name Vehicle Registration Jurisdiction Comment Text Mass Sensor Unit Count Work Diary Number Vehicle Registration Number Mass Sensor Unit Sequence Work Hours Option Number Work Rest Status Mass Status Two-up Driver Status Self-Declared Mass Date Time Device ID **Direction of Travel** Horizontal Dilution of Precision Axle Group Count Latitude Lift Axle Status Longitude Axle Group Mass Satellite Count Gross Vehicle Mass Self-Declared Mass Mass Sensor Unit Record Number Sequence Number Vehicle Category Code

Table 8: Selection of data elements for Road Infrastructure Management application

Defining data records

One type of record is generated for this application, based on the data elements, as detailed in Table 5.

Table 5: Record Format of a Utilisation Record from the Road Infrastructure Management application

Data Element
Date
Time
Device ID
Direction of Travel
Horizontal Dilution of Precision
Latitude
Longitude
Satellite Count
Self-Declared Mass
Record Number
Vehicle Category Code

Field Name	Use	Data Type	Length	Decimals
Date	Mandatory	Date	8*	
Time	Mandatory	Time	6*	
IVU ID	Mandatory	String	20	
Direction of Travel	Mandatory	Decimal	5	1
HDOP	Optional	Decimal	4	1
Position Latitude	Mandatory	Decimal	9	5
Position Longitude	Mandatory	Decimal	10	5
Satellite Count	Optional	Integer	2	
Total vehicle mass	Optional	Integer	6	
Record Number	Mandatory	Integer	10	
Vehicle Category	Optional	Integer	2	

^{*} In this use case, Date is encoded as YYYYMMDD, and Time is encoded as HHMMSS.

8.2 CREATING A NEW APPLICATION

When combined, these items form a Functional and Technical Specification for a new application (road utilisation data for planning purposes) within the National Telematics Framework.

Things to note:

Additional data elements could be included in this application as they become available through the use of On-Board Mass (OBM) Systems, namely:

- Axle Data
- Mass Data.

These items are highlighted in green.

CONTACT

Transport Certification Australia Level 6, 333 Queen Street Melbourne VIC 3000 Phone: + 61 3 8601 4600 Email: tca@tca.gov.au Website: www.tca.gov.au